Miniaturisierung Elektronische Geräte auf DNA-Basis

Redakteur: Ira Zahorsky

Bis auf 14 Nanometer hat die Industrie die zentralen Elemente ihrer Computerchips in den letzten 60 Jahren schrumpfen lassen. Doch die konventionellen Methoden stoßen an physikalische Grenzen. Komplexe Bauteile aus Molekülen und Atomen, die sich selbst organisieren, könnten eine Alternative bieten.

Anbieter zum Thema

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf haben durch DNA-basierte Nanodrähte Strom geleitet, indem sie sie mit Goldpartikeln besetzt haben
Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf haben durch DNA-basierte Nanodrähte Strom geleitet, indem sie sie mit Goldpartikeln besetzt haben
(Bild: HDRZ)

„Bislang nutzt die Industrie die so genannte ‚Top Down‘-Methode. Vom Grundmaterial werden so lange Teile weggeschnitten, bis man bei der gewünschten Struktur angekommen ist. Aufgrund der anhaltenden Miniaturisierung ist das aber bald nicht mehr möglich“, erläutert Dr. Artur Erbe vom Institut für Ionenstrahlphysik und Materialforschung am Helmholtz-Zentrum Dresden-Rossendorf (HZDR).

Der neuartige Ansatz seines Teams, den die Wissenschaftler „Bottom Up“-Verfahren nennen, orientiert sich dagegen an der Natur: aus Molekülen entwickeln sich durch selbstorganisatorische Abläufe komplexe Strukturen. Die Elemente, die dabei entstehen, wären wesentlich kleiner als die derzeit winzigsten Bauteile moderner Computerchips. „Mit Hilfe dieses Verfahrens, das sich an die japanische Papierfalttechnik Origami anlehnt und dementsprechend als DNA-Origami bezeichnet wird, können wir winzige Muster kreieren“, erläutert der HZDR-Forscher. „Denkbar sind hier auch extrem kleine Schaltkreise, die sich aus Molekülen und Atomen zusammensetzen.“

Doch Erbgut leitet Strom nicht besonders gut. Seine Kollegen und er haben deshalb über chemische Bindungen vergoldete Nanopartikel auf den DNA-Drähten platziert. Mit einer „Top Down“-Methode – der Elektronenstrahl-Lithographie – kontaktierten sie die einzelnen Drähte anschließend elektronisch. „Diese Verbindung zwischen den wesentlich größeren Elektroden und einzelnen DNA-Strukturen hat bisher technische Schwierigkeiten bereitet. Durch unsere Kombination der beiden Verfahren konnten wir das lösen. Dadurch konnten wir erstmals den Ladungstransport durch einzelne Drähte genau bestimmen.“

Der Stromfluss ist allerdings auch abhängig von der umgebenden Temperatur. „Bei abnehmenden Graden sinkt gleichzeitig der Ladungstransport“, beschreibt Erbe die Ergebnisse. „Bei normaler Raumtemperatur funktionieren die Drähte aber gut, auch wenn die Elektronen teilweise von einem Goldpartikel zum nächsten springen müssen, da die Teilchen nicht komplett zusammenwachsen. Der Abstand ist allerdings so gering, dass er sich nicht einmal mit den derzeit besten Mikroskopen zeigen lässt.“ Um den Fluss zu verbessern, will das Team um Artur Erbe nun leitfähige Polymere zwischen die Goldpartikel einbauen. Auch der Metallisierungsprozess lässt sich nach Ansicht des Physikers noch optimieren.

(ID:44373238)